جواب کاردرکلاس صفحه 26 درس 2 ریاضی هشتم (عددهای اول)
تعداد بازدید : 80.71Mپاسخ کاردرکلاس صفحه 26 ریاضی هشتم
-گام به گام کاردرکلاس صفحه 26 درس عددهای اول
-کاردرکلاس صفحه 26 درس 2
-شما در حال مشاهده جواب کاردرکلاس صفحه 26 ریاضی هشتم هستید. ما در تیم مای درس، پاسخنامههای کاملاً تشریحی و استاندارد را مطابق با آخرین تغییرات کتاب درسی 1404 برای شما گردآوری کردهایم. اگر به دنبال بهروزترین پاسخها برای این صفحه هستید و میخواهید بدون نیاز به اتصال به اینترنت، علاوه بر پاسخهای گام به گام، به گنجینهای از مطالب درسی دسترسی پیدا کنید، حتماً اپلیکیشن مایدرس را نصب نمایید.
📥 دانلود اپلیکیشن مایدرس
برای دسترسی آفلاین، سریع و بدون نیاز به اینترنت به گنجینهای از گامبهگامها و نمونه سوالات، اپلیکیشن را نصب کنید.
مانند نمونه، بررسی کنید که عددهای داده شده (97، 131 و 143) اول یا مرکّب هستند.
\(\sqrt {97} \simeq 9 \to \)
پس باید آن را به عددهای اول 2، 3، 5 و 7 تقسیم کنیم.
\(\begin{array}{l}\begin{array}{*{20}{c}}{}\\{97}\\\begin{array}{l}\underline {\,\,\,\,\,\,\,\,\,} \\\,\,\,\,1\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,2\,\,\,} }\\{}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}}{}\\{97}\\\begin{array}{l}\underline {\,\,\,\,\,\,\,\,\,} \\\,\,\,\,\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,3\,\,\,} }\\{}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\\\\\\\begin{array}{*{20}{c}}{}\\{97}\\\begin{array}{l}\underline {\,\,\,\,\,\,\,\,\,} \\\,\,\,\,\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,5\,\,\,} }\\{}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}}{}\\{97}\\\begin{array}{l}\underline {\,\,\,\,\,\,\,\,\,} \\\,\,\,\,\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,7\,\,\,} }\\{}\end{array}} \right.}\\{}\end{array}\end{array}\)
چون تمام تقسیم ها باقیمانده دارند، 97 مضرب هیچ کدام نیست؛ یعنی عدد اول است.
\(\begin{array}{l}\sqrt {131} \simeq .......... \to \\\\\sqrt {143} \simeq .......... \to \end{array}\)
\(\begin{array}{l}\sqrt {97} \simeq 9 \to \\\\\\\begin{array}{*{20}{c}}{}\\{97}\\\begin{array}{l}\underline {\,\,\,\,96\,\,\,\,\,} \\\,\,\,\,\,\,1\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,2\,\,\,} }\\{48}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}}{}\\{97}\\\begin{array}{l}\underline {\,\,\,\,96\,\,\,\,\,} \\\,\,\,\,\,\,1\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,3\,\,\,} }\\{32}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\\\\\\\begin{array}{*{20}{c}}{}\\{97}\\\begin{array}{l}\underline {\,\,\,\,95\,\,\,\,\,} \\\,\,\,\,\,\,2\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,5\,\,\,} }\\{19}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}}{}\\{97}\\\begin{array}{l}\underline {\,\,\,\,91\,\,\,\,\,} \\\,\,\,\,\,6\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,7\,\,\,} }\\{13}\end{array}} \right.}\\{}\end{array}\end{array}\)
\(\sqrt {131} \simeq 11 \to \)
پس باید آن را به عددهای اول 2، 3، 5، 7 و 11 تقسیم کنیم.
\(\begin{array}{l}\begin{array}{*{20}{c}}{}\\{131}\\\begin{array}{l}\underline {\,\,\,\,130\,\,\,\,\,} \\\,\,\,\,\,\,\,1\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,2\,\,\,} }\\{65}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}}{}\\{131}\\\begin{array}{l}\underline {\,\,\,\,129\,\,\,\,\,} \\\,\,\,\,\,\,2\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,3\,\,\,} }\\{43}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\\\\\\\begin{array}{*{20}{c}}{}\\{131}\\\begin{array}{l}\underline {\,\,\,\,\,130\,\,\,\,} \\\,\,\,\,\,\,\,1\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,5\,\,\,} }\\{26}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}}{}\\{131}\\\begin{array}{l}\underline {\,\,\,\,126\,\,\,\,\,} \\\,\,\,\,\,\,\,5\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,7\,\,\,} }\\{18}\end{array}} \right.}\\{}\end{array}\\\\\begin{array}{*{20}{c}}{}\\{131}\\\begin{array}{l}\underline {\,\,\,\,121\,\,\,\,\,} \\\,\,\,\,10\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,11\,\,\,} }\\{11}\end{array}} \right.}\\{}\end{array}\end{array}\)
چون تمام تقسیم ها باقیمانده دارند، 131 مضرب هیچ کدام نیست؛ یعنی عدد اول است.
\(\sqrt {143} \simeq 11 \to \)
پس باید آن را به عددهای اول 2، 3، 5، 7 و 11 تقسیم کنیم.
\(\begin{array}{l}\begin{array}{*{20}{c}}{}\\{143}\\\begin{array}{l}\underline {\,\,\,\,142\,\,\,\,\,} \\\,\,\,\,1\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,2\,\,\,} }\\{71}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}}{}\\{143}\\\begin{array}{l}\underline {\,\,\,141\,\,\,\,\,} \\\,\,\,\,2\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,3\,\,\,} }\\{47}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\\\\\\\begin{array}{*{20}{c}}{}\\{143}\\\begin{array}{l}\underline {\,\,\,\,140\,\,\,\,\,} \\\,\,\,\,3\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,5\,\,\,} }\\{28}\end{array}} \right.}\\{}\end{array}\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}}{}\\{143}\\\begin{array}{l}\underline {\,\,\,140\,\,\,\,} \\\,\,\,\,3\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,7\,\,\,} }\\{20}\end{array}} \right.}\\{}\end{array}\\\\\begin{array}{*{20}{c}}{}\\{143}\\\begin{array}{l}\underline {\,\,\,\,140\,\,\,\,\,} \\\,\,\,\,0\end{array}\end{array}\begin{array}{*{20}{c}}{}\\{\left| {\begin{array}{*{20}{c}}{\underline {\,\,\,11\,\,\,} }\\{13}\end{array}} \right.}\\{}\end{array}\end{array}\)
چون بر عدد 11 تقسیم پذیر می باشد، پس عدد مرکّب است.
مای درس ، برترین اپلیکیشن کمک درسی ایران
پوشش تمام محتواهای درسی پایه چهارم تا دوازدهم- آزمون آنلاین تمامی دروس
- گام به گام تمامی دروس
- ویدئو های آموزشی تمامی دروس
- گنجینه ای از جزوات و نمونه سوالات تمامی دروس
- فلش کارت های آماده دروس
- گنجینه ای جامع از انشاء های آماده
- آموزش جامع آرایه های ادبی، دستور زبان، قواعد زبان انگلیسی و ... ویژه





