نصب اپلیکیشن

صفحه رسمی مای درس

اطلاع از آخرین تغییرات، جوایز و مسابقات مای درس
دنبال کردن

مبدل ها

پاسخ تایید شده
3 ماه قبل
0
[شاه کلید مای درس] | مبدل ها
bookmark_border یازدهم ریاضی
book فیزیک (2) رشته ریاضی
bookmarks فصل 4 : القای الکترومغناطیسی و جریان متناوب
3 ماه قبل
0

مبدل ها

مزایای مولد های AC نسبت به DC

1) در انتقال توان در فاصله های دور، از ولتاژ هرچه بالاتر و جریان هر چه متری استفاده کنیم، باعث کاهش اتلاف \(R{I^2}\) در خط های انتقال می شود.

2) در افزایش انرژی الکتریکی از نیروگاه به محل مصرف کننده توسط یک مبدل ولتاژ را افزایش و جریان را کاهش می دهند (طبق رابطه \(P = VI\) اگر توان تولیدی را ثابت فرض کنیم افزایش ولتاژ توسط یک مبدل با کاهش جریان همراه است) تا توان تلف شده در سیم ها انتقال (\(R{I^2}\)) به کمترین مقدار برسد.

نحوه کارکرد مبدل

مبدل شامل دو پیچه با روکش عایق که روی یک هسته آهنی پیچیده شده اند. اگر پیچه اولیه را به یک مولد جریان متناوب وصل کنیم، شار عبوری از آن نیز تغییر می کند، این شار متغییر از راه هسته از پیچه ثانویه عبور می کند و در اثر پدیده القای متقابل باعث القای نیروی محرکه  الکتریکی در پیچه ثانویه می شود.

 

رابطه تعداد دور ها با ولتاژ در مبدل ها

میدان و شار مغناطیسی در داخل هسته آهنی بسیار بیشتر از خارج هسته است و می توان فرض کرد تمام شار تولید شده در پیچه اولیه از پیچه ثانویه عبور می کند.

\(\frac{{\Delta {\Phi _1}}}{{\Delta t}} = \frac{{\Delta {\Phi _2}}}{{\Delta t}} \to \frac{{{\varepsilon _2}}}{{{\varepsilon _1}}} = \frac{{ - {N_2}\frac{{\Delta {\Phi _2}}}{{\Delta t}}}}{{ - {N_1}\frac{{\Delta {\Phi _1}}}{{\Delta t}}}} \to \varepsilon = V \to \frac{{{V_2}}}{{{V_1}}} = \frac{{{N_2}}}{{{N_1}}}\)

رابطه تعداد دور ها با شدت جریان در مبدل های ایده آل (آرمانی)

مبدلی را ایده آل گویند که هیچگونه اتلاف انرژی در آن وجود نداشته باشد. در نتیجه توان ورودی به مبدل آرمانی برابر توان خروجی از آن است.

\(P{}_{_1} = {P_2} \to {V_1}{I_1} = {V_2}I{}_2 \to \frac{{{I_2}}}{{{I_1}}} = \frac{{{V_1}}}{{{V_2}}} \to \frac{{{I_2}}}{{{I_1}}} = \frac{{{N_1}}}{{{N_2}}}\)

 

فرمول مبدل ها (ترانسفورماتور ها)

\(\frac{{{V_2}}}{{{V_1}}} = \frac{{{N_2}}}{{{N_1}}} = \frac{{{I_1}}}{{{I_2}}}\)

 

استفاده از مبدل برای کاهش اتلاف انرژی الکتریکی

در انتقال انرژی الکتریکی از نیروگاه به محل مصرف کنندخ توسط یک مبدل، ولتاژ را تا حد امکان افزایش و جریان را تا حد امکان کاهش می دهند تا توان تلف شده در سیم های انتقال برق (\(R{I^2}\)) به حداقل برسد.

 

توان تلف شده در خط انتقال

اگر توان تولیدی نیروگاه P ولتاژ بین خط های انتقال V باشد، شدت جریان در خط های فشار قوی \(I = \frac{P}{V}\) می شود. فرض می کنیم که مقاومت خط های انتقال برابر R باشد. در این صورت توان تلف شده \(P'\) در خط انتقال برابر می شود با:

\(P' = R\frac{{{P^2}}}{{{V^2}}}\)

رابطه ی مقایسه ای توان تلف شده در دو خط انتقال

خط انتقال توان، توان الکتریکی ثابت P را تحویل می گیرد. اگر انشعابی در مسیر نیروگاه تا مقصد وجود نداشته باشد، نسبت توان تلف شده در دو خط انتقال به صورت رابطه زیر است.

\(P' = R{I^2} \to P' = R\frac{{{P^2}}}{{{V^2}}} \to \frac{{{{P'}_1}}}{{{{P'}_2}}} = (\frac{{{R_1}}}{{{R_2}}}){(\frac{{{V_2}}}{{{V_1}}})^2}\)

مثال

توان تولیدی نیروگاهی \(2MW\) است. می خواهیم این انرژی را با کابل های مسی به طول \(20Km\) و سطح مقطع \(2c{m^2}\) انتقال دهیم. اگر ولتاژ خط های انتقال \(400kv\) باشد، توان تلف شده در خط های انتقال، چند ولت می شود؟

\(\begin{array}{l}P = 2 \times {10^6}W\\L = 20 \times {10^3}m\\A = 2 \times {10^{ - 4}}{m^2}\\V = 400 \times {10^3}kv\\P' = ?\\\rho = 1/8 \times {10^{ - 8}}\Omega m\\R = \rho \frac{L}{A} \to R = 1/8 \times {10^{ - 8}} \times \frac{{2 \times {{10}^4}}}{{2 \times {{10}^{ - 4}}}} \to R = 1/8\Omega \\P' = R\frac{{{P^2}}}{{{V^2}}} \to P' = 1/8 \times \frac{{{{(2 \times {{10}^6})}^2}}}{{{{(400 \times {{10}^3})}^2}}} \to P' = 45W\end{array}\)


سایر مباحث این فصل