نصب اپلیکیشن

صفحه رسمی مای درس

اطلاع از آخرین تغییرات، جوایز و مسابقات مای درس
دنبال کردن

خلاصه نکات ریاضی هفتم فصل 8 بردار و مختصات - درسنامه شب امتحان ریاضی هفتم فصل 8 بردار و مختصات - جزوه شب امتحان ریاضی هفتم نوبت اول فصل 8 بردار و مختصات



بردار

شناخت بردار

حرکت و نیرو را با پاره خط های جهت دار نشان می دهیم.در ریاضی به پاره خط جهت دار بردار می گوییم. بردار OA را به صورت  \(\overrightarrow {OA} \) نشان می دهیم.

 

نام گذاری بردار

این کار به دو صورت انجام می شود:

الف) نخست نقطه ابتدا، سپس نقطه انتها را نوشته و نماد را روی آن قرار دهید؛ مانند: \(\overrightarrow {AB} \)

\(A\;\; \to \;\;B\)

ب) با یک حرف کوچک لاتین که در وسط بردار قرار می گیرد، انجام می شود؛ مانند:

تهیه کننده:مسعود زیرکاری



مای درس ، برترین اپلیکیشن کمک درسی ایران

پوشش تمام محتواهای درسی پایه هفتم
  • آزمون آنلاین تمامی دروس پایه هفتم
  • گام به گام تمامی دروس پایه هفتم
  • ویدئو های آموزشی تمامی دروس پایه هفتم
  • گنجینه ای از جزوات و نمونه سوالات تمامی دروس پایه هفتم
  • فلش کارت های آماده دروس پایه هفتم
  • گنجینه ای جامع از انشاء های آماده پایه هفتم
  • آموزش جامع آرایه های ادبی، دستور زبان، قواعد زبان انگلیسی و ... ویژه پایه هفتم

کاملا رایگان

+500 هزار کاربر


همین حالا نصب کن



اندازه و انواع بردارها

اندازه (طول) بردار

برای رسیدن به اندازه بردار نخست به جهت حرکت بردار توجه نمایید (سمت راست + و سمت چپ -) و سپس تعداد واحد های بین ابتدا و انتهای بردار را بشمارید.

 

بردارهای مساوی

دو بردار وقتی برابرند که هم راستا هم اندازه و هم جهت باشند.

 

بردارهای قرینه

دو بردار وقتی قرینه یکدیگرند که مساوی باشند، اما در خلاف جهت هم حرکت کنند؛ مانند:

 

جمع دو بردار قرینه، همیشه صفر می شود.

تهیه کننده:مسعود زیرکاری 





مختصات

مختصات

از دو محور عمود بر هم تشکیل می شود. محور افقی را محور طول ها (x ها) و محور عمودی را محور عرض ها (y ها) می نامند.

محل برخورد دو محور را «مبدأ مختصات» می نامند و با حرف O نمایش می دهند.

محورهای مختصات صفحه را به ۴ قسمت تقسیم می کنند.

در شکل مقابل این ۴ ناحیه با عددهای ۱ تا ۴ مشخص شده اند.

 

مختصات نقطه

به طول و عرض هر نقطه که به صورت \(\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\) نمایش داده می شود، مختصات آن نقطه گفته می شود.

این مختصات می تواند + ، -  یا حتی  0 باشد.

مختصات نقاط در ٤ قسمت:

1) اگر نقطه ای در قسمت ۱ (ربع یا ناحیه اول) قرار گرفته باشد، دارای طول و عرض مثبت می باشد:

\(\;\; \to \;\;\left[ {\begin{array}{*{20}{c}}x& + \\y& + \end{array}} \right]\)قسمت 1

2) اگر نقطه در قسمت ۲ (ربع یا ناحیه دوم) قرار گرفته باشد، دارای طول منفی و عرض مثبت می باشد:

\(\;\; \to \;\;\left[ {\begin{array}{*{20}{c}}x& - \\y& + \end{array}} \right]\)قسمت 2

3) اگر نقطه در قسمت ۳ (ربع یا ناحیه سوم) قرار گرفته باشد، دارای طول و عرض منفی می باشد:

\(\;\; \to \;\;\left[ {\begin{array}{*{20}{c}}x& - \\y& - \end{array}} \right]\)قسمت 3

4) و اگر نقطه در قسمت ۴ (ربع یا ناحیه چهارم) قرار گرفته باشد، دارای طول مثبت و عرض منفی می باشد:

\(\;\; \to \;\;\left[ {\begin{array}{*{20}{c}}x& + \\y& - \end{array}} \right]\)قسمت 4

اگر نقطه ای روی محور طولها (x ها) قرار گرفته باشد، طول آن نقطه عدد و عرض آن 0 می شود.

1 تمام بردارهایی که موازی محور x ها باشند نیز دارای عرض 0 می باشند.

2 اگر نقطه ای روی محور عرض ها (y ها) قرار گرفته باشد، طول آن نقطه 0 و عرض آن عدد می شود.

3 تمام بردارهایی که موازی محور y ها باشند نیز دارای طول 0 می باشند.

 

مختصات مبدأ مختصات

محل برخورد محورهای مختصات را با حرف O نمایش می دهند و مختصات آن برابر است با: \(O = \left[ {\begin{array}{*{20}{c}} \circ \\ \circ \end{array}} \right]\)

مثال

ناحیه نقاط زیر را بنویسد.

\(\begin{array}{l}1)\,\left[ {\begin{array}{*{20}{c}}1\\{ - 1}\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2)\,\left[ {\begin{array}{*{20}{c}}{ - 5}\\{ - 4/5}\end{array}} \right]\\\\3)\left[ \begin{array}{l}6\\5\end{array} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\left[ {\begin{array}{*{20}{c}} \circ \\ \circ \end{array}} \right]\\\\5)\,\left[ {\begin{array}{*{20}{c}}{ - 1}\\1\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,6)\left[ {\begin{array}{*{20}{c}}{ - 1}\\ \circ \end{array}} \right]\\\\7)\,\left[ {\begin{array}{*{20}{c}} \circ \\6\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,8)\left[ {\begin{array}{*{20}{c}}5\\5\end{array}} \right]\end{array}\)

1 ناحیه چهارم                        2 ناحیه سوم                       3 ناحیه اول

4 مرکز مختصات                     5 ناحیه دوم                        6 محور x های منفی

7 محور y های مثبت               8 ناحیه اول (بر روی نیم ساز ناحیه اول و سوم)

 مثال

اگر نقطه \(\left[ {\begin{array}{*{20}{c}}{m + 6}\\{ - 3m - 5}\end{array}} \right]\) روی محور y ها باشد، مختصات نقطه را مشخص کنید.

هنگامی که مختصات نقطه ای بر روی محور y ها باشد، مؤلفه x آن برابر صفر خواهد بود:

\(m + 6 = 0 \Rightarrow m = - 6 \Rightarrow \left[ {\begin{array}{*{20}{c}} \circ \\{13}\end{array}} \right]\)

مثال

اگر فاصله نقطه \(\left[ {\begin{array}{*{20}{c}}{ - 4a + 1}\\{3a + 8}\end{array}} \right]\) از هر دو محور مختصات به یک فاصله باشد، مختصات نقطه را بیابید و ناحیه آن را مشخص کنید.

\(\begin{array}{l} - 4a + 1 = 3a + 8 \Rightarrow - 4a - 3a = 8 - 1\\\\ \Rightarrow - 7a = 7 \Rightarrow a = - 1 \Rightarrow \left[ \begin{array}{l}5\\5\end{array} \right]\end{array}\)

نقطه در ناحیه اول قرار دارد.

 تهیه کننده: مسعود زیرکاری





اعمال ریاضی در بردارها

جمع متناظر بردار

در نوشتن جمع متناظر با یک بردار به مقدار ابتدا، اندازه و انتهای آن نیاز دارید تا با استفاده از دستور زیر بتوانید جمع متناظر بردار را بنویسید:

انتها = اندازه + ابتدا

 

بردار انتقال

به برداری گفته می شود که یک نقطه یا یک شکل را به اندازه مختصاتش (از ابتدا به انتها) منتقل نماید.

 

قرینه بردار

قرینه ابتدا و انتهای بردار مورد نظر را نسبت به مبدأ مختصات یا یکی از محورها (طول یا عرض) یافته و سپس بردار قرینه را رسم می کنیم.

 

قرینه بردار نسبت به محور طول ها

فقط عرض بردار قرینه می شود:

\(\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\;\;x \to \;\left[ {\begin{array}{*{20}{c}}x\\{ - y}\end{array}} \right]\)

 

قرینه بردار نسبت به محور عض ها

فقط طول بردار قرینه می شود:

\(\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\;\;y \to \;\left[ {\begin{array}{*{20}{c}}x\\{ - y}\end{array}} \right]\)

 

قرینه بردار نسبت به مبدأ مختصات

طول و عرض بردار هر دو قرینه می شود:

\(\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\;\;o \to \;\;\left[ {\begin{array}{*{20}{c}}{ - x}\\{ - y}\end{array}} \right]\)

مثال

مرکز پاره خط AB که در آن \(A = \left[ \begin{array}{l}5\\4\end{array} \right]\) و \(B = \left[ \begin{array}{l} - 3\\6\end{array} \right]\) را بیابید.

\(\begin{array}{l}\left. \begin{array}{l}A = \left[ \begin{array}{l}5\\4\end{array} \right] = \left[ \begin{array}{l}{x_A}\\{y_A}\end{array} \right]\\\\B = \left[ \begin{array}{l} - 3\\6\end{array} \right] = \left[ \begin{array}{l}{x_B}\\{y_B}\end{array} \right]\end{array} \right\} \Rightarrow M = \left[ \begin{array}{l}{x_M}\\{y_M}\end{array} \right]\\\\\left. \begin{array}{l}{x_M} = \frac{{{x_A} + {x_B}}}{2} = \frac{{5 + ( - 3)}}{2} = \frac{2}{2} = 1\\\\{y_M} = \frac{{{y_A} + {y_B}}}{2} = \frac{{6 + 4}}{2} = \frac{{10}}{2} = 5\end{array} \right\} \Rightarrow M = \left[ \begin{array}{l}1\\5\end{array} \right]\end{array}\)

مثال

بردار \(\left[ \begin{array}{l}9 - 3x\\1 - \frac{y}{3}\end{array} \right]\) برداری است که ابتدا و انتهای آن روی هم قرار دارند؛ y + x را بدست آورید.

فقط بردار \(\overrightarrow O = \left[ {\begin{array}{*{20}{c}} \circ \\ \circ \end{array}} \right]\) ابتدا و انتهای آن روی هم قرار دارند؛ بنابراین:

\(\begin{array}{l}\left[ \begin{array}{l}9 - 3x\\1 - \frac{y}{3}\end{array} \right] = \left[ {\begin{array}{*{20}{c}} \circ \\ \circ \end{array}} \right] \Rightarrow \left\{ \begin{array}{l}9 - 3x = 0 \Rightarrow 9 = 3x \Rightarrow x = 3\\\\1 - \frac{y}{3} = 0 \Rightarrow 1 = \frac{y}{3} \Rightarrow y = 3\end{array} \right.\\\\ \Rightarrow x + y = 6\end{array}\)

مثال

قرینه بردارهای زیر را نسبت به مرکز و یا محور داده شده مشخص کنید.

\(\begin{array}{l}1)\,\,\left[ \begin{array}{l} - 2\\4\end{array} \right]\,\,\,\,\,\,\,\,\,\,y \to \\\\2)\,\,\left[ \begin{array}{l}5\\ - 3\end{array} \right]\,\,\,\,\,\,\,\,\,\,x \to \\\\3)\,\,\left[ \begin{array}{l} - 15\\ - 20\end{array} \right]\,\,\,\,\,\,\,\,\,\,y \to \\\\4)\,\,\left[ \begin{array}{l} - 15\\ - 20\end{array} \right]\,\,\,\,\,\,\,\,\,\,x \to \\\\5)\,\,\left[ \begin{array}{l}15\\ - 20\end{array} \right]\,\,\,\,\,\,\,\,\,\,\left[ \begin{array}{l} \circ \\ \circ \end{array} \right] \to \\\\6)\,\,\left[ \begin{array}{l} - 10\\ + 3\end{array} \right]\,\,\,\,\,\,\,\,\,\,\left[ \begin{array}{l} \circ \\ \circ \end{array} \right] \to \end{array}\)

\(\begin{array}{l}1)\,\,\left[ \begin{array}{l} - 2\\4\end{array} \right]\,\,\,\,\,\,y \to \,\,\,\,\,\,\left[ \begin{array}{l}2\\4\end{array} \right]\\\\2)\,\,\left[ \begin{array}{l}5\\ - 3\end{array} \right]\,\,\,\,\,\,\,x \to \,\,\,\,\left[ \begin{array}{l}5\\3\end{array} \right]\\\\3)\,\,\left[ \begin{array}{l} - 15\\ - 20\end{array} \right]\,\,\,\,\,\,\,\,\,y \to \,\,\,\,\,\left[ \begin{array}{l}15\\ - 20\end{array} \right]\\\\4)\,\,\left[ \begin{array}{l} - 15\\ - 20\end{array} \right]\,\,\,\,\,\,\,x \to \,\,\,\,\,\left[ \begin{array}{l} - 15\\20\end{array} \right]\\\\5)\,\,\left[ \begin{array}{l}15\\ - 20\end{array} \right]\,\,\,\,\,\,\,\left[ \begin{array}{l} \circ \\ \circ \end{array} \right] \to \,\,\,\,\left[ \begin{array}{l} - 15\\20\end{array} \right]\\\\6)\,\,\left[ \begin{array}{l} - 10\\ + 3\end{array} \right]\,\,\,\,\,\,\,\left[ \begin{array}{l} \circ \\ \circ \end{array} \right] \to \,\,\,\,\left[ \begin{array}{l} + 10\\ - 3\end{array} \right]\end{array}\)

تهیه کننده: مسعود زیرکاری



مای درس ، برترین اپلیکیشن کمک درسی ایران

پوشش تمام محتواهای درسی پایه هفتم
  • آزمون آنلاین تمامی دروس پایه هفتم
  • گام به گام تمامی دروس پایه هفتم
  • ویدئو های آموزشی تمامی دروس پایه هفتم
  • گنجینه ای از جزوات و نمونه سوالات تمامی دروس پایه هفتم
  • فلش کارت های آماده دروس پایه هفتم
  • گنجینه ای جامع از انشاء های آماده پایه هفتم
  • آموزش جامع آرایه های ادبی، دستور زبان، قواعد زبان انگلیسی و ... ویژه پایه هفتم

کاملا رایگان

+500 هزار کاربر


همین حالا نصب کن



یافتن مقدار مجهول در تساوی های برداری

یافتن مقدار مجهول در تساوی های برداری

اگر مقدار مجهول (نامعلوم) در انتهای تساوی برداری بود، مقدارهای ابتدا و اندازه را با هم جمع کنید؛ مانند:

\(\begin{array}{l}\left[ {\begin{array}{*{20}{c}}2\\{ - 4}\end{array}} \right]\;\; + \left[ {\begin{array}{*{20}{c}}{ - 3}\\1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\\\\\left. \begin{array}{l}x = 2 + ( - 3) = - 1\\y = ( - 4) + 1 = - 3\end{array} \right\}\;\; \Rightarrow \;\;\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 1}\\{ - 3}\end{array}} \right]\end{array}\)

اگر مقدار مجهول (نامعلوم) در ابتدا یا اندازه تساوی برداری قرار گرفته بود، مقدار انتها را منهای قسمت دیگر کنید:

\(\begin{array}{l}\left[ {\begin{array}{*{20}{c}}2\\{ - y}\end{array}} \right]\;\; + \left[ {\begin{array}{*{20}{c}}{ - x}\\{ - 2}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 2}\\3\end{array}} \right]\\\\\left. \begin{array}{l} - x = ( - 2) - 2 = - 4\\ - y = 3 - ( - 2) = 5\end{array} \right\}\; \Rightarrow \,\,\left. \begin{array}{l}x = 4\\y = - 5\end{array} \right\}\,\, \Rightarrow \;\;\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4\\{ - 5}\end{array}} \right]\end{array}\)

مثال

اگر \(A = \left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\,\,,\,\,B = \left[ {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right]\) و \(2\overrightarrow {BA} + \overrightarrow {AC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\4\end{array}} \right]\) ، مختصات نقطه C را بدست آورید.

ابتدا بردار \(\overrightarrow {AC} \) را بدست می آوریم:

\(\begin{array}{l}\overrightarrow {BA} = \overrightarrow {OA} - \overrightarrow {OB} = \left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 2}\\2\end{array}} \right]\\\\2\overrightarrow {BA} + \overrightarrow {AC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\4\end{array}} \right] \Rightarrow 2\left[ {\begin{array}{*{20}{c}}{ - 2}\\2\end{array}} \right] + \overrightarrow {AC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\4\end{array}} \right]\\\\ \Rightarrow \left[ {\begin{array}{*{20}{c}}{ - 4}\\4\end{array}} \right] + \overrightarrow {AC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\4\end{array}} \right] \Rightarrow \overrightarrow {AC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\4\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{ - 4}\\4\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 1}\\ \circ \end{array}} \right]\\\\\overrightarrow {AC} = \overrightarrow {OC} - \overrightarrow {OA} \Rightarrow \left[ {\begin{array}{*{20}{c}}{ - 1}\\ \circ \end{array}} \right] = \overrightarrow {OC} - \left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\\\\ \Rightarrow \overrightarrow {OC} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\ \circ \end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right] \Rightarrow \overrightarrow {OC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\3\end{array}} \right] \Rightarrow C = \left[ {\begin{array}{*{20}{c}}{ - 5}\\3\end{array}} \right]\end{array}\)

مثال

اگر \(\left[ {\begin{array}{*{20}{c}}{4x + 3}\\{7 + y}\end{array}} \right]\, = \left[ {\begin{array}{*{20}{c}}{x - 3}\\{10 - 2y}\end{array}} \right]\) ، حاصل \(\frac{{3x - 1}}{{4y + 2}}\) کدام است؟

\(\begin{array}{l}\left[ {\begin{array}{*{20}{c}}{4x + 3}\\{7 + y}\end{array}} \right]\, = \left[ {\begin{array}{*{20}{c}}{x - 3}\\{10 - 2y}\end{array}} \right]\\\\4x + 3 = x - 3 \Rightarrow 3x = - 3 \Rightarrow x = - 1\\\\7 + y = 10 - 2y \Rightarrow 3y = - 3 \Rightarrow y = - 1\\\\ \Rightarrow \frac{{3x - 1}}{{4y + 2}} = \frac{{3( - 1) - 1}}{{4( - 1) + 2}} = \frac{{ - 4}}{{ - 2}} = 2\end{array}\)

تهیه کننده:مسعود زیرکاری





تعیین مختصات بردار به کمک ترسیم

تعیین مختصات بردار به کمک ترسیم

از ابتدا و انتهای بردار، دو خط به موازات محور طول و عرض به ترتیب رسم کنید تا در نقطه ای یکدیگر را قطع کنند و تشکیل یک مثلث قائم الزاویه دهند. حالا از ابتدا به سمت انتهای بردار حرکت کنید تا هم جهت و هم مختصات آن را مشخص کنید؛ مانند:

می بینید از ابتدای بردار ۷ واحد به سمت راست حرکت کرده ایم، یعنی ۷+ و 4+ واحد نیز به سمت بالا حرکت کرده ایم؛ پس مختصات بردار مورد نظر  \(\left[ {\begin{array}{*{20}{c}}{ + 7}\\{ + 4}\end{array}} \right]\) خواهد بود.

مثال

بردار خواسته شده را رسم کنید.

1 بردار \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 1}\end{array}} \right]\) ابتدا در \(\left[ {\begin{array}{*{20}{c}}{ - 1}\\{ - 2}\end{array}} \right]\)

2 بردار \(\left[ {\begin{array}{*{20}{c}}2\\{ - 2}\end{array}} \right]\) انتها در \(\left[ {\begin{array}{*{20}{c}} \circ \\ \circ \end{array}} \right]\)

3 بردار \(\left[ {\begin{array}{*{20}{c}}3\\{ - 4}\end{array}} \right]\) ابتدا در \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\2\end{array}} \right]\)

تهیه کننده:مسعود زیرکاری






محتوا مورد پسند بوده است ؟

3.81 - 19 رای