نصب اپلیکیشن

صفحه رسمی مای درس

اطلاع از آخرین تغییرات، جوایز و مسابقات مای درس
دنبال کردن
0
[شاه کلید مای درس] | یافتن مقدار مجهول در تساوی های برداری
bookmark_border هفتم
book ریاضی هفتم
bookmarks فصل 8 : بردار و مختصات
1 سال قبل
0

یافتن مقدار مجهول در تساوی های برداری

اگر مقدار مجهول (نامعلوم) در انتهای تساوی برداری بود، مقدارهای ابتدا و اندازه را با هم جمع کنید؛ مانند:

\(\begin{array}{l}\left[ {\begin{array}{*{20}{c}}2\\{ - 4}\end{array}} \right]\;\; + \left[ {\begin{array}{*{20}{c}}{ - 3}\\1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right]\\\\\left. \begin{array}{l}x = 2 + ( - 3) = - 1\\y = ( - 4) + 1 = - 3\end{array} \right\}\;\; \Rightarrow \;\;\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 1}\\{ - 3}\end{array}} \right]\end{array}\)

اگر مقدار مجهول (نامعلوم) در ابتدا یا اندازه تساوی برداری قرار گرفته بود، مقدار انتها را منهای قسمت دیگر کنید:

\(\begin{array}{l}\left[ {\begin{array}{*{20}{c}}2\\{ - y}\end{array}} \right]\;\; + \left[ {\begin{array}{*{20}{c}}{ - x}\\{ - 2}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 2}\\3\end{array}} \right]\\\\\left. \begin{array}{l} - x = ( - 2) - 2 = - 4\\ - y = 3 - ( - 2) = 5\end{array} \right\}\; \Rightarrow \,\,\left. \begin{array}{l}x = 4\\y = - 5\end{array} \right\}\,\, \Rightarrow \;\;\left[ {\begin{array}{*{20}{c}}x\\y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4\\{ - 5}\end{array}} \right]\end{array}\)

مثال

اگر \(A = \left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\,\,,\,\,B = \left[ {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right]\) و \(2\overrightarrow {BA} + \overrightarrow {AC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\4\end{array}} \right]\) ، مختصات نقطه C را بدست آورید.

ابتدا بردار \(\overrightarrow {AC} \) را بدست می آوریم:

\(\begin{array}{l}\overrightarrow {BA} = \overrightarrow {OA} - \overrightarrow {OB} = \left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 2}\\2\end{array}} \right]\\\\2\overrightarrow {BA} + \overrightarrow {AC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\4\end{array}} \right] \Rightarrow 2\left[ {\begin{array}{*{20}{c}}{ - 2}\\2\end{array}} \right] + \overrightarrow {AC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\4\end{array}} \right]\\\\ \Rightarrow \left[ {\begin{array}{*{20}{c}}{ - 4}\\4\end{array}} \right] + \overrightarrow {AC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\4\end{array}} \right] \Rightarrow \overrightarrow {AC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\4\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{ - 4}\\4\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 1}\\ \circ \end{array}} \right]\\\\\overrightarrow {AC} = \overrightarrow {OC} - \overrightarrow {OA} \Rightarrow \left[ {\begin{array}{*{20}{c}}{ - 1}\\ \circ \end{array}} \right] = \overrightarrow {OC} - \left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\\\\ \Rightarrow \overrightarrow {OC} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\ \circ \end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right] \Rightarrow \overrightarrow {OC} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\3\end{array}} \right] \Rightarrow C = \left[ {\begin{array}{*{20}{c}}{ - 5}\\3\end{array}} \right]\end{array}\)

مثال

اگر \(\left[ {\begin{array}{*{20}{c}}{4x + 3}\\{7 + y}\end{array}} \right]\, = \left[ {\begin{array}{*{20}{c}}{x - 3}\\{10 - 2y}\end{array}} \right]\) ، حاصل \(\frac{{3x - 1}}{{4y + 2}}\) کدام است؟

\(\begin{array}{l}\left[ {\begin{array}{*{20}{c}}{4x + 3}\\{7 + y}\end{array}} \right]\, = \left[ {\begin{array}{*{20}{c}}{x - 3}\\{10 - 2y}\end{array}} \right]\\\\4x + 3 = x - 3 \Rightarrow 3x = - 3 \Rightarrow x = - 1\\\\7 + y = 10 - 2y \Rightarrow 3y = - 3 \Rightarrow y = - 1\\\\ \Rightarrow \frac{{3x - 1}}{{4y + 2}} = \frac{{3( - 1) - 1}}{{4( - 1) + 2}} = \frac{{ - 4}}{{ - 2}} = 2\end{array}\)

تهیه کننده:مسعود زیرکاری


سایر مباحث این فصل